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SUMMARY 

Plastic buckling of thin shells under external pressure is consibered, 

using the shallow shell approach. 

simply supported type spherical plates and plastic buckling coefficients a r e  

determined for various values of a shell geometry parameter. 

Characteristic equations a r e  obtained for 
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SYMBOLS 

plasticity coefficient matrix 

($1 A /A - plasticity parameter - 
12 11 

axial rigidity = 4Est/3 

I E t3/9 - f lexur a1 rigidity - 
S 

diameter of the base circle (dimensionless) 

s e c ant modulus 

tangent modulus 

number of nodal circles 

bending moment resultant per unit length 

number of nodal lines 

direct s t ress  resultant per unit length 

external pr  e s sur  e 

radial coordinate (dimensionless) 

radius of the sphere of which the cap is a part 

(dimensionless) 

thickness of the shell (dimensionless) 

dimensionless displacements in tangential, 

circumferential and normal directions 

dimensionless shell curvature parameter 

= (d2/Rt) (1  - Y ; ) ~  

dimensionless buckling s t r e s s  = (at/DA )z 

dimensionless shell geometry parameter 

= (Ett/DA2 R2)T 
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direct strain variation 

pla s t ic i ty r e duct ion facto r 

- - 

- - 

1 - plastic Poisson ratio = 2 
- - 

constant compressive s t ress  at buckling = pR/zt 

curvature variation 

- - 

- - 

- - Laplacian operator = @ / a r 2  t ( l /r)  a / a r  t ( l / r z ) a z / a € P  
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PLASTIC STABILITY OF SIMPLY SUPPORTED SPHERICAL 

PLATES UNDER EXTERNAL PRESSURE 

In t r o duct ion 

The use of spherical plates as pressure vessel closures in various 

types of vehicles has generated interest in the plastic stability of spherical 

plates under external pressure.  

spherical elements which fall in the transition region between axially loaded 

circular flat plates where boundary conditions a r e  significant and spherical 

shells where boundary conditions a r e  insignificant. 

The term spherical plate refers to those 

The plastic stability of spherical shells has been investigated theo- 
1 2 3 4 retically by Bijlaard , Gerard and Lunchick . Recently, Krenzke con- 

ducted an experimental investigation to check these theories and found that 

the plasticity reduction factors were in good agreement when the discrepancy 

in elastic buckling coefficient was accounted for by an empirical correction. 

In this paper, plastic stability theory of Ref. 2 is used to obtain plas- 

ticity reduction factors f o r  spherical plates in the transition region between 

flat circular plates and spherical shells. 

metr ic  and asymmetric buckling modes under external pressure based on an 

extension of the elastic stability of spherical plates presented in Ref. 5. 

Results a r e  obtained for the axisym- 

Governing Equations 

In Ref. 2, Gerard has derived a Donne11 type eigth order equation 

which is mainly applicable to the plastic buckling problem of cylindrical shells 

and the special case of that of a full sphere under external pressure. 

case of spherical plates, however, it is appropriate to use a shallow shell 

approach and obtain a coupled pair of Karman type equations. 

In the 

The basic assumption of a shallow shell theory, namely that the verti- 

cal r i se  is small compared to the buckle wavelength, leads to simplifications 
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in both the equilibrium and strain displacement relationships. 

the radius of the base circle representing the distance from the axis of the 

shell to the edge of the cap is taken a s  the unit of length and hence all lengths 

a r e  essentially dimensionless. 

In the following, 

The strain displacement relationships are:  

In the above equations, E, x denote the direct strain and curvature variations, 

u+, u8, w the displacements in the meridional, circumferential and normal 

directions r e  spe ctively . 
The equilibrium equations for the buckling problem of a shallow 

spherical cap under external pressure , consistent with the strain displace- 

ment relations Eqs. (1) through ( 3 ) ,  are:  

In E q s .  (4) to ( 6 ) ,  N ,  M refer to the direct s t ress  and moment resultants 

respectively; p is the external pressure, (r the constant compressive s t ress  

(= pR/2t) at buckling, R the radius of the sphere of which the cap is a part ,  

t the thickness of the shell and $ the Laplacian operator. 
The s t ress  -strain relationship in the plastic range, utilizing defor- 

mation theory (Ref. 2X are:  

N = BA (E t AE,) + 11 + M = DA ( x + t A x , )  9 11 

2 

(7) 



where B = 4Est/3 and D = Est3/9; Es being the secant modulus. 

A is a component of the plasticity coefficient matrix A.., which for 
11 1J 

the spherical case has the following form (Ref. 2): 

where E+ i s  the 
L 

(10) 

1 - 

(11) 

:I (3Et/Es t 1)/4 (3Et/Es - 1)/2 

(3Et/E S - 1)/2 (3Et/Es + 1)/4 

0 0 

tangent modulus and A i s  a plasticity parameter given by 

A = (1/2 A /A  ) = (3Et/E S - 1)/(3Et/Es t 1) 
12 11 

a r e  seen from Eqs. ( l ) ,  (2) 
€04) 

The direct strain variations e,, e+, 

and (3) to satisfy a compatibility relationship 

It is readily seen that a s t ress  function F can be introduced such that 

Eqs. (4) and (5) a r e  identically satisfied, with the direct s t ress  resultants 

being related as follows: 

By use of Eq, (13), the governing equations of the problem reduce to the solv- 

ing of Eqs. (6) and (12), with F being introduced into them. 

By making use of Eqs. (10) to (12); (1) to (3)  and (13), Eqs. (12) and 

( 6 )  can be written in the following form: 
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v4F = (Ett/A R ) d w  
11 

DA V'w t l/R'$F t p t ottvZw = 0 
11 

These then a r e  the governing equations of the spherical plate problem. 

Before we deal with Eqs. (14) and (15) a s  such, it is advantageous 

to study the flat circular plate and full sphere cases first. 

plate solution wil l  readily yield the results of the circular plate case by letting 

the appropriate t e rm containing the height of the shell vanish. 

possible to obtain the solution for the full sphere a s  a singular case of the 

same equations. 

The spherical 

It is also 

Flat Circular Plate 

For a flat circular plate under axial compression with R -. m in  

Eqs. (14) and (15), we obtain the following governing equation: 

If we let p=O in Eq. (161 we have 

where Q~ = crt/DA ). The general solution of Eq. (17), with the requirement 

that w, l / r  a w / a r  and $/art be finite a t  r = O ,  can be written as 
11 

rn t c J (~1-11  cos ne In n w = z [Con 
n=O 

In 4. (18) n represents the number of nodal lines on the deformed surface. 

For a simply supported edge, we obtain the characteristic equation 

for the buckling coefficient Q as: 
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The lowest root of Eq. (19) for n = 0,  the axisymmetric case, 

provides the critical buckling stress for a given Et/Es ratio. 

separate out the plasticity effects it is useful to define a plasticity reduction 

factor q ,  following Ref. 2, defined as  

In order to 

In Table 1, numerical results fo r  Eq. (19) with n = 0 a r e  given in terms of 

for different Et/ Es ratios. 

Table 1 : Plasticity Reduction Factors for Simply Supported 

Flat Circular Plat e s 

Et/Es 

I * @  
0.75 
0.50 
0.25 
0 

1.0 

0.765 
0.526 
0.278 

0 

Full Sphere 

Eqs. (14) and (15) a r e  transformed, after operating with v2 , into 

the following: 

V6F t (rt/DA )V4F t (Ett/A2 DR2)V1F = -(Ett/DA2 R)p (22) 
11 11 11 

We assume a constant s t ress  state throughout the region under 

pressure given by $F = -pR so that Eq. (22) is satisfied identically. 

Then a suitable form for displacement w would be 

w = C J (kr)  cosne n n  

, 
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By substituting Eq. (23)  into Eq. (21) and obtaining a minimum condition 

for (ut/DA ) we find that 
11 

1 
= 2(Ett/DA2 R2)’ 

(Ut/DA1Jmin 11 

or  

1 
= [3 ( 1  - v ”1”” ‘11(Et/R) U c r  e 

where 

In Eq. (26)  v i s  the current Poisson ratio a s  in Ref. 2. 

by taking q = 1 in Eq. (25)  we obtain the elastic critical s t ress .  

c r  

It is readily seen that 

It is clear that the expression for u in Eq. (25) i s  independent of n in 

the expression for w in Eq. (23) .  

we obtain the same critical s t ress  for the sphere. 

Hence for both axi- and asymmetric modes, 

Spherical Plate 

In the case of a spherical plate, where both curvature and boundary 

affect the buckling s t ress ,  a simple assumption on the s t r e s s  state cannot 

be made a s  in the case of the sphere. 

solutions of Eq. (21)  and (22)  which can be written conveniently a s  

Hence we must consider the general 

r 

t k2) (+ t k2)w = 0 
1 2 

V2(V2 t k2) (V2 t k 2 ) F  = - k2  k2 Rp 
1 2 1 2  

where 

1 
k2,  kZ = Q2/ 2 f [(QZ/2)’ - p2]’ 

1 2  
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It is seen from Eq. (24)  that the case of full sphere corresponds to 

a2 /2  = p or  k = l? in Eq. (29) .  

only k { k . 
Hence for the spherical plate we need consider 

1 

1 2  
The solutions of Eqs. (27)  and (28)  can now be written as: 

00 

w = [ C rn t C J (k r)  t ClnJn (k  r)] cos n 8 
on in n 1 2 n=O 

F = -pR$/4 - (Ett/A R) [ A  rn t (C / k 2 ) J  (k r )  on I n 1  n 1  11 n=O 

t (C /k2)Jn(k2r)] cosne 
2n 2 

where the finiteness of w, l / r  aw/ar, @w/a$, F ,  l / r  a F / a r  and @ F / a r 2  a t  

r = 0 is taken into account. 

For a simply-supported type edge fixture we can write the following 

boundary conditions, a s  discussed in Ref. (5), at the edge r = 1; 

With the above boundary conditions, the characteristic equation for the buck- 

ling s t ress  is written as follows: 

(k2 - k2)J ( k ) J  ( k )  t (1 - A) [k J (k  )J ( k )  - k J ( k ) J  ( k ) ]  = 0 (33)  
2 i n i n 2  1 n 2 n t l  1 z n 1 n t i  2 

for n >O.  - 
Eq. (33)  can be solved for k (or k ) for a given value of p. Each 

1 2 
non-trivial root for a given n corresponds to an increased number of nodal 

circles starting from the single nodal circle corresponding to the axisymmetric 

case of n = 0. 

m, nnumbers.  

Hence, we can characterize the results of Eq. (33) by their 
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Numerical Results 

Figure 1 shows a plot of the results of Eq. (33) for  various values 

obtained by the use of a digital computer for Et /E  
0. 25. 

ratio of 1, 0.75, 0.50 and 
S 

For convenience of comparison with the results from cylindrical shells 

the coordinates have been re-defined. 

where d is the base diameter, and a shell parameter Z ,  given by Z = (d2/Rt) 

(1 - vpl- have been used where a and p a r e  related to  k and Z in the following 

manner: 

A buckling coefficient k = o-td2/$D, 

1 

(34) 

1 1 
Z = d2 (1 - /Rt = 4 (1 - v i ) +  /Rt = A (Et/Es)-E(2rs5)P (35) 

11 

v 

In Eqs. (34) and (35), since all  lengths a re  normalized with respect to the 

radius of the base circle,  d = 2. 

being the fully plastic value of Poisson ratio = 
P 

Thus for the spherical case of a2/2 = p, we have 

1 

k = ( 6 / . l r 2 )  (Et/Es)zZ 

The elastic case (Et /E  

the minimum line is given by k z.351 Z. 

= 1) corresponds 
S 

(36) 

to k = .702 Z. For Et/Es = 0.25  

The k - Z plots of Figure 1, show the curves that correspond to various 

buckling modes indicated by m , n  specifications, for Et/Es ratios of 1 and 0. 25. 

It is a distinctive feature of the spherical plate problem that there is  a single 

minimum line k = (eJ?-/.lrz) (Et/Es)'Z, for the value of Et/Es - < 1, corres-  

ponding to both axi- and asymmetric modes as  contrasted with the cylindrical 

problem, Ref. ( 6 ) ,  where for the plastic case there a r e  two minimum lines 

depending upon whether the governing mode is axi- o r  asymmetric. 

1 

To compare the plastic and elastic behavior using the plasticity reduc- 

tion faction defined in Eq. (20), values of 

different modes by using the data presented in Figure 1. 

presented in Figure 2 and Figure 3. 

have been determined for  the 

These data a r e  

For large 2 values, where the straight 
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line becomes the best approximation for the buckling stress as seen from 

Figure 1 ,  ;1 i s  seen from Eq. (36)  to be 

For other boundary conditions, the determined 

elastic buckling stress coefficient k. 

can be used with the correct 
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